830 research outputs found

    Alkaline phosphatase activity in the phytoplankton communities of Monterey Bay and San Francisco Bay

    Get PDF
    Author Posting. © American Society of Limnology and Oceanography, 2006. This is the author's version of the work. It is posted here by permission of American Society of Limnology and Oceanography for personal use, not for redistribution. The definitive version was published in Limnology and Oceanography 51 (2006): 874–883.Enzyme-labeled fluorescence (ELF) and bulk alkaline phosphatase (AP) activity enzyme assays were used to evaluate the phosphorus (P) status of phytoplankton communities in San Francisco and Monterey bays. Both regions exhibit spatial and temporal variability in bulk AP activity with maximum activities during the early spring and summer periods of high biological productivity. ELF analysis revealed pronounced differences in the makeup of organisms responsible for AP activity in these two environments. In Monterey Bay dinoflagellates are responsible for the bulk of the AP activity. Diatoms infrequently exhibited AP activity. Dinoflagellates that comprised only 14% of all cells counted in Monterey Bay accounted for 78% of AP-producing cells examined. The presence of AP activity in this group suggests that changes in P sources, concentrations, and bioavailability could disproportionably influence this group relative to diatoms in Monterey Bay. In San Francisco Bay, AP production, indicated by ELF, was associated primarily with bacteria attached to suspended particles, potentially used to hydrolyze organic compounds for carbon, rather than to satisfy P requirements. Our results highlight the importance of organic P as a bioavailable nutrient source in marine ecosystems and as a component of the marine P cycle

    Temporal variability of downward fluxes of organic carbon off Monterey Bay

    Get PDF
    17 USC 105 interim-entered record; under review.Sediment traps were deployed at two depths (300 m and 1200 m) off Monterey Bay (36°40â€ČN and 122°25â€ČW, Central California) for 7.3 years (1998–2005). The sediment trap data provided information about the quantity and quality of settling material, and allowed exploration of the relationship of the sinking material with the environmental conditions in this coastal upwelling region. The magnitude and composition of the settling material were highly variable over time. Organic carbon (Corg) fluxes ranged between 4–296 mg C m−2 day−1 and 0.1–142 mg C m−2 day−1 for shallow and deep sediment traps, respectively. The time series of Corg vertical flux was characterized by pulses of intense fluxes that were associated with peaks of primary production, generally during upwelling periods. Despite considerable variability, fluxes varied seasonally with highest values during the upwelling season and the lowest in winter. Attenuation of Corg vertical fluxes with depth (300 m vs. 1200 m) varied between 31% and 24% except for the late upwelling period, when there was an increase with depth likely due to resuspension of material from Monterey Canyon. Calculation of a seasonal vertical budget of organic carbon off Monterey Bay resulted in a transfer between 4.0% and 4.9% of the primary production to the deep ocean, suggesting that coastal upwelling efficiently sequestered CO2.The principal source of support for these measurements was the David and Lucile Packard Foundation. CGC was partially supported by a National Research Council Fellowship at the Naval Postgraduate School.

    Carbon export and regeneration in the coastal upwelling system of Monterey Bay, central California

    Get PDF
    In order to quantify the role of coastal upwelling regions as source or sink areas for carbon, the relationships between particulate organic carbon (POC) production, export, remineralization, and accumulation were examined in Monterey Bay from 1989 through 1992. During a normal upwelling year (1989–90), a high positive correlation (r = 0.91) is observed between biweekly primary production and POC export at 450 m. Primary production values range from 500 mgC m−2 d−1 during the winter, to 2600 mgC m−2 d−1 in the spring and summer upwelling months. Corresponding deep-water (450 m) POC fluxes vary from a minimum of 10 mgC m−2 d−1 in December, to 120 mgC m−2 d−1 in May. In contrast, the mid-1991 through 1992 data sets obtained during the \u2791–92 El Nino period, show a relatively poor correlation (r = 0.23) between productivity and carbon export. Calculated ratios of POC export to POC production (defined as e-ratios) display a trend for the three-year data sets in which the e-ratio values are greatest during periods of low productivity and decrease to minimal values when surface production is high. Upwelling-induced, offshore Ekman transport of organic matter and probable seasonal changes in the planktonic community structure are the mechanisms likely to be responsible for the e-ratio trends. Based on the data sets reported from this work, a simple box model of the annual export and regeneration of particulate organic carbon is presented for the Monterey Bay region. An appreciable advective and/or recycling “loss” from the euphotic zone of 362.8 gC m−2 y−1 is estimated, representing primarily algal material transported offshore and/or recycled within the upper 100 m of the water column. Annual mid-water (≈100– 450 m) and deep-water (\u3e450 m) POC remineralization rates of 71.8 gC m−2 y−1 of 7.2 gC m−2 y−1, respectively, are reported for Monterey Bay. The average POC rain rate to the underlying slope sediments is sufficient to satisfy reported benthic utilization requirements without invoking an additional input source of POC via deep lateral advection and/or the downslope movement of particulate material

    Microbial community transcriptional networks are conserved in three domains at ocean basin scales

    Get PDF
    Planktonic microbial communities in the ocean are typically dominated by several cosmopolitan clades of Bacteria, Archaea, and Eukarya characterized by their ribosomal RNA gene phylogenies and genomic features. Although the environments these communities inhabit range from coastal to open ocean waters, how the biological dynamics vary between such disparate habitats is not well known. To gain insight into the differential activities of microbial populations inhabiting different oceanic provinces we compared the daily metatranscriptome profiles of related microbial populations inhabiting surface waters of both a coastal California upwelling region (CC) as well as the oligotrophic North Pacific Subtropical Gyre (NPSG). Transcriptional networks revealed that the dominant photoautotrophic microbes in each environment (Ostreococcus in CC, Prochlorococcus in NPSG) were central determinants of overall community transcriptome dynamics. Furthermore, heterotrophic bacterial clades common to both ecosystems (SAR11, SAR116, SAR86, SAR406, and Roseobacter) displayed conserved, genome-wide inter- and intrataxon transcriptional patterns and diel cycles. Populations of SAR11 and SAR86 clades in particular exhibited tightly coordinated transcriptional patterns in both coastal and pelagic ecosystems, suggesting that specific biological interactions between these groups are widespread in nature. Our results identify common diurnally oscillating behaviors among diverse planktonic microbial species regardless of habitat, suggesting that highly conserved temporally phased biotic interactions are ubiquitous among planktonic microbial communities worldwide.Gordon and Betty Moore Foundation (3777)National Science Foundation (U.S.) (Grant EF0424599)Simons Foundation (Simons Collaboration on Ocean Processes and Ecology

    Impact of recently upwelled water on productivity investigated using in situ and incubation-based methods in Monterey Bay

    Get PDF
    Author Posting. © American Geophysical Union, 2017. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 122 (2017): 1901–1926, doi:10.1002/2016JC012306.Photosynthetic conversion of inline image to organic carbon and the transport of this carbon from the surface to the deep ocean is an important regulator of atmospheric inline image. To understand the controls on carbon fluxes in a productive region impacted by upwelling, we measured biological productivity via multiple methods during a cruise in Monterey Bay, California. We quantified net community production and gross primary production from measurements of inline image/Ar and inline image triple isotopes ( inline image), respectively. We simultaneously conducted incubations measuring the uptake of 14C, inline image, and inline image, and nitrification, and deployed sediment traps. At the start of the cruise (Phase 1) the carbon cycle was at steady state and the estimated net community production was 35(10) and 35(8) mmol C m−2 d−1 from inline image/Ar and 15N incubations, respectively, a remarkably good agreement. During Phase 1, net primary production was 96(27) mmol C m−2 d−1 from C uptake, and gross primary production was 209(17) mmol C m−2 d−1 from inline image. Later in the cruise (Phase 2), recently upwelled water with higher nutrient concentrations entered the study area, causing 14C and inline image uptake to increase substantially. Continuous inline image/Ar measurements revealed submesoscale variability in water mass structure and likely productivity in Phase 2 that was not evident from the incubations. These data demonstrate that inline image/Ar and inline image incubation-based NCP estimates can give equivalent results in an N-limited, coastal system, when the nonsteady state inline image fluxes are negligible or can be quantified.Funding for this work was provided by NSF awards OCE-1060840 to R.H.R. Stanley, OCE-1129644 to D.P. Nicholson, OCE-1357042 to F.P. Chavez, NASA award NNX14AI06G to M.R. Fewings, the David and Lucile Packard Foundation through their generous annual donation to the Monterey Bay Aquarium Research Institute, an Ocean Ventures Fund award from the WHOI Academic Programs Office to CC Manning, and graduate scholarships from NSERC and CMOS to CC Manning.2017-09-1

    Ecological divergence of a mesocosm in an eastern boundary upwelling system assessed with multi-marker environmental DNA metabarcoding

    Get PDF
    Eastern boundary upwelling systems (EBUS) contribute a disproportionate fraction of the global fish catch relative to their size and are especially susceptible to global environmental change. Here we present the evolution of communities over 50 days in an in situ mesocosm 6 km offshore of Callao, Peru and in the nearby unenclosed coastal Pacific Ocean. The communities were monitored using multi-marker environmental DNA (eDNA) metabarcoding and flow cytometry. DNA extracted from weekly water samples were subjected to amplicon sequencing for four genetic loci: 1) the V1-V2 region of the 16S rRNA gene, for photosynthetic eukaryotes (via their chloroplasts) and bacteria; 2) the V9 region of the 18S rRNA gene for exploration of eukaryotes but targeting phytoplankton; 3) cytochrome oxidase I (COI), for exploration of eukaryotic taxa but targeting invertebrates, and 4) the 12S rRNA gene, targeting vertebrates. The multi-marker approach showed a divergence of communities (from microbes to fish) between the mesocosm and the unenclosed ocean. Together with the environmental information, the genetic data furthered our mechanistic understanding of the processes that are shaping EBUS communities in a changing ocean. The unenclosed ocean experienced significant variability over the course of the 50-day experiment with temporal shifts in community composition but remained dominated by organisms that are characteristic of high nutrient, upwelling conditions (e.g. diatoms, copepods, anchovies). A large directional change was found in the mesocosm community. The mesocosm community that developed was characteristic of upwelling regions when upwelling relaxes and waters stratify (e.g. dinoflagellates, nanoflagellates). The selection of dinoflagellates under the warm (coastal El Ni&ntilde;o) and stratified conditions in the mesocosm may be an indication of how EBUS will respond under the global environmental changes (i.e. continued global warming) forecast by the IPCC.</p

    Targeted sampling by autonomous underwater vehicles

    Get PDF
    © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Zhang, Y., Ryan, J. P., Kieft, B., Hobson, B. W., McEwen, R. S., Godin, M. A., Harvey, J. B., Barone, B., Bellingham, J. G., Birch, J. M., Scholin, C. A., & Chavez, F. P. Targeted sampling by autonomous underwater vehicles. Frontiers in Marine Science, 6 (2019): 415, doi:10.3389/fmars.2019.00415.In the vast ocean, many ecologically important phenomena are temporally episodic, localized in space, and move according to local currents. To effectively study these complex and evolving phenomena, methods that enable autonomous platforms to detect and respond to targeted phenomena are required. Such capabilities allow for directed sensing and water sample acquisition in the most relevant and informative locations, as compared against static grid surveys. To meet this need, we have designed algorithms for autonomous underwater vehicles that detect oceanic features in real time and direct vehicle and sampling behaviors as dictated by research objectives. These methods have successfully been applied in a series of field programs to study a range of phenomena such as harmful algal blooms, coastal upwelling fronts, and microbial processes in open-ocean eddies. In this review we highlight these applications and discuss future directions.This work was supported by the David and Lucile Packard Foundation. The 2015 experiment in Monterey Bay was partially supported by NOAA Ecology and Oceanography of Harmful Algal Blooms (ECOHAB) Grant NA11NOS4780030. The 2018 SCOPE Hawaiian Eddy Experiment was partially supported by the National Science Foundation (OCE-0962032 and OCE-1337601), Simons Foundation Grant #329108, the Gordon and Betty Moore Foundation (Grant #3777, #3794, and #2728), and the Schmidt Ocean Institute for R/V Falkor Cruise FK180310. Publication of this paper was funded by the Schmidt Ocean Institute

    Oxygen: A Fundamental Property Regulating Pelagic Ecosystem Structure in the Coastal Southeastern Tropical Pacific

    Get PDF
    Background: In the southeastern tropical Pacific anchovy (Engraulis ringens) and sardine (Sardinops sagax) abundance have recently fluctuated on multidecadal scales and food and temperature have been proposed as the key parameters explaining these changes. However, ecological and paleoecological studies, and the fact that anchovies and sardines are favored differently in other regions, raise questions about the role of temperature. Here we investigate the role of oxygen in structuring fish populations in the Peruvian upwelling ecosystem that has evolved over anoxic conditions and is one of the world's most productive ecosystems in terms of forage fish. This study is particularly relevant given that the distribution of oxygen in the ocean is changing with uncertain consequences. Methodology/Principal Findings: A comprehensive data set is used to show how oxygen concentration and oxycline depth affect the abundance and distribution of pelagic fish. We show that the effects of oxygen on anchovy and sardine are opposite. Anchovy flourishes under relatively low oxygen conditions while sardine avoid periods/areas with low oxygen concentration and restricted habitat. Oxygen consumption, trophic structure and habitat compression play a fundamental role in fish dynamics in this important ecosystem. Conclusions/Significance: For the ocean off Peru we suggest that a key process, the need to breathe, has been neglected previously. Inclusion of this missing piece allows the development of a comprehensive conceptual model of pelagic fish populations and change in an ocean ecosystem impacted by low oxygen. Should current trends in oxygen in the ocean continue similar effects may be evident in other coastal upwelling ecosystems
    • 

    corecore